
Neural networks for natural
language understanding

Sam Bowman
Department of Linguistics and NLP Group
Stanford University

with Chris Potts, Chris Manning

Today

Promising signs that neural network models can learn to
handle semantic tasks:
● Sentiment and semantic similarity (e.g., Tai et al. 2015)
● Paraphrase detection (Socher et al. 2011)
● Machine translation (e.g., Sutskever et al. 2014,

Bahdanau et al. 2014)

How do these models work?

How well can they handle anything we’d recognize as
meaning?

Today

How do these models work?
● Survey: Deep learning models for NLU

How well can they handle anything we’d recognize as
meaning?
● A measure of success: natural language inference
● Three experiments on artificial data
● Frontiers: What about real language?

NNs for sentence meaning

Input: Word vectors

Output: Sentence vectors

Training: Supervised classification over sentence vectors

badthatnot

badthatnot not that bad

badthatnot not that bad

Prediction: 2/5

NNs for sentence meaning

Input: Word vectors

Output: Sentence vectors

Training: Supervised classification over sentence vectors

badthatnot

badthatnot not that bad

badthatnot not that bad

Prediction: 2/5

Label: 3/5

Baseline: Sum of words

Prediction: 3/5 Σ ()
● Words and constituents are 25-

500d vectors.
● Optimize with SGD
● Gradients from backprop

Softmax classifier

bad

that

not

Recurrent NNs for text

Prediction: 3/5not

● Words and constituents are 25-
500d vectors.

● One learned composition function:
 y = f(M[x yprev] + b)

● Optimize with SGD
● Gradients from backprop (through

time)

f(x) = tanh(x)
 ...usually

badnot that

not that not that bad

Composition NN layers
s

Softmax classifier

Learned word vectors

Recurrent NNs for text

Prediction: 3/5not

● LSTM (Long Short Term Memory) models are RNNs
with a more complex learned activation function meant
to do a better job of preserving information across long
sequences.

badnot that

not not Prediction: 3/5not

badnot that

not that not

Composition LSTM layers Softmax classifier

Learned word vectors

 Hochreiter and Schmidhuber 1997

not not that bad

My focus: TreeRNNs*

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

Socher et al. 2011

● Sequence of operations follows parse tree
● Different sentence? Different tree structure.
*RNN = Recurrent NN and TreeRNN = Tree-structured Recursive NN. Aagh.

My focus: TreeRNNs

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

Socher et al. 2011

● Basic TreeRNN uses the same kind of learned function
as an RNN:
 y = f(M[xl xr] + b)

Variants: Dependency TreeRNNs

bad

is

the movie isn’t bad

● Dependency tree RNNs
y = Mheadxhead + f(Mrel(1)x1) + f(Mrel(2)x2)...

is

DET
Words transformed into constituents

n’t

n’t
NEG

Learned word vectors

Label: 3/5
Softmax classifier

movie

the movie

the

the

COPNSUBJ

Socher et al. 2014

Variants: Matrix-vector TreeRNN

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors
and word matrices

● Matrix-vector RNN
composition functions:
 y = f(Mv[Ba Ab])

Y = Mm[A B]

Socher et al. 2012

Variants: TreeRNTN

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NTN layer

Learned word vectors

Composition NTN layer

● Recursive neural tensor
network composition
function:

y = f(xlM
[1...N]xr + M[xl xr] + b)

Chen et al. 2013, Socher et al. 2013

Other NNs for sentence meaning

And more:
● Tree autoencoders (Socher et al 2011)
● TreeLSTMs (Tai et al 2015)
● Convolutional NNs for text (Kalchbrenner et al. 2014)
● Character-level convolution (Zhang and LeCun 2015)

...

The big question

How well are supervised neural network
models able to learn representations of
sentence meaning?

The big question

How well are supervised neural network
models able to learn representations of
sentence meaning?

The big question

How well are supervised neural network
models able to learn representations of
sentence meaning?

Don’t ask what meanings are. Ask what they do, and find
something that does that.

-David Lewis, paraphrased

The task: Natural language inference

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants

Bill’s thesis

The task: Natural language inference

Claim: Simple task to define, but engages the full
complexity of compositional semantics:
● Lexical entailment
● Quantification
● Coreference
● Lexical/scope ambiguity
● Commonsense knowledge
● Propositional attitudes
● Modality
● Factivity and implicativity

...

Lexical relations

Experimental approach: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)

Formulating a learning problem

Training data:
dance entails move
waltz neutral tango
tango entails dance
sleep contradicts dance
waltz entails dance

Memorization (training set): Generalization (test set):
dance ??? move sleep ??? waltz
waltz ??? tango tango ??? move

MacCartney’s natural logic

An implementable logic for natural language inference
without logical forms. (MacCartney and Manning ‘09)
● Sound logical interpretation (Icard and Moss ‘13)

Natural logic: relations
Seven possible relations between phrases/sentences:

Venn symbol name example

x ≡ y equivalence couch ≡ sofa

x ⊏ y forward entailment
(strict)

crow ⊏ bird

x ⊐ y reverse entailment
(strict)

European ⊐ French

x ^ y negation
(exhaustive exclusion)

human ^ nonhuman

x | y alternation
(non-exhaustive exclusion)

cat | dog

x ‿ y cover
(exhaustive non-exclusion)

animal ‿ nonhuman

x # y independence hungry # hippo

Slide from Bill MacCartney

Natural logic: relation joins

MacCartney’s join table: a R b ∧ b R’ c ⊢ a {R ⨝ R’} c

{animal ⊐ cat, cat ⊐ kitten} ⊢ animal ⊐ kitten
{cat ⊏ animal, animal ^ non-animal} ⊢ cat | non-animal

Natural logic: relation joins

Can our NNs learn to make these inferences
over pairs of embedding vectors?

Lexical relations: data generation

{b,c}

{b}

{}

{c}

{a,b,c}

{a}

{a,b} {a,c}

Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}

Lexical relations
Extracted relations:
p1 ≡ p2
p1 ^ p7
p1 ⊐ p5
p4 ⊐ p8
p2 ⊐ p5
p5 ≡ p6
p5 | p7
p7 ⊏ p4
p7 ^ p1
p8 ⊐ p1

Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}

Lexical relations
Train: Test:
p1 ≡ p2

p1 ^ p7
p1 ⊐ p5
p4 ⊐ p8

p2 ⊐ p5
p5 ≡ p6

p5 | p7
p7 ⊏ p4

p7 ^ p1
p8 ⊐ p4

Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}

Lexical relations
Train: Test:
p1 ≡ p2

p1 ^ p7
p1 ⊐ p5
p4 ⊐ p8

p2 ⊐ p5
p5 ≡ p6

p5 | p7
p7 ⊏ p4

p7 ^ p1
p8 ⊐ p4

Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}

A minimal NN for lexical relations

P(entailment) = 0.9

pantsjeans

jeans vs. pants

Softmax classifier

Comparison N(T)N layer

Learned word vectors

● Words are learned embedding vectors.

● One plain TreeRNN or
TreeRNTN layer

● Softmax emits relation labels

● Learn everything with SGD.

Lexical relations: training

● 80 random terms (p1 - p80) denoting sets
○ Sampled with replacement from the powerset of the

set of 7 entities (a-g)

● 6400 statements, yielding:
○ 3200 training examples
○ about 2900 provable test examples

(~7% not provable)

Lexical relations: results

● Both models tuned, then trained to convergence on five
randomly generated datasets

● Reported figures: % correct (macroaveraged F1)

● Both NNs used 15d embeddings, 75d comparison layer

Lexical relations: Conclusions

● Success! NTNs can learn lexical entailment networks
○ No special optimization techniques required
○ Good generalization even with small training sets

● Open questions:
○ Geometric theory of lexical relations?
○ Relationship between the number of terms and the

number of dimensions in the embedding?

Recursion in propositional logic

Experimental approach: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)

Recursion in propositional logic

Experimental approach: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)
● Learn how lexical relations impact phrasal relations.

(projectivity)

Recursion in propositional logic

Experimental approach: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)
● Learn how lexical relations impact phrasal relations.

(projectivity)
○ This needs to be recursively applicable!

a ≡ a, a ^ (not a), a ≡ (not (not a)), ...

Recursion in propositional logic
Data: randomly generated sentences with and, or, and not
● 6 proposition variables (a-f), at most 4 per example
● Propositions are variables over unknown truth values

(264 possible representations)
● Train on statements with at most 4 operators, test with

more.

NLI with TreeRNNs

● Model structure:
○ Two trees, then a separately learned comparison

layer, then a classifier:
P(|) = 0.8

not a vs. a and b

band

and ba

a and b

anot

not a

Softmax classifier

Comparison N(T)N layer

Composition RN(T)N layer

Learned word vectors

Recursion in propositional logic

Today

How do these models work?
● Survey: Deep learning models for NLU

How well can they handle anything we’d recognize as
meaning?
● A measure of success: natural language inference
● Can NNs learn lexical relations?
● Can TreeRNNs learn recursive functions?
● What about quantification and monotonicity?
● Frontiers: What about real language?

Quantifiers

Experimental paradigm: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)
● Learn how lexical relations impact phrasal relations.

(projectivity)

Quantifiers

Experimental paradigm: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical

relations)
● Learn how lexical relations impact phrasal relations.

(projectivity)
● Quantifiers present some of the harder cases of both of

these.

Two experiments

Quantifiers
● Small vocabulary

○ Three basic types:
■ Quantifiers: some, all, no, most, two, three, not-

all, not-most, less-than-two, less-than-three
■ Predicates: dog, cat, mammal, animal …
■ Negation: not

● 60k examples generated using a generative
implementation of the relevant portion of MacCartney
and Manning’s logic.

● All sentences of the form QPP, with optional negation
on each predicate.

Quantifier results

Train Test

Most freq. class (# only) 35.4% 35.4%

25d SumNN (sum of words) 96.9% 93.9%

25d TreeRNN 99.6% 99.2%

25d TreeRNTN 100% 99.7%

Summary: Artificial data

● Simple NTNs can encode relation composition
accurately.

● Tree structured models can learn recursive functions,
and can apply them in structures that are (somewhat)
larger than those seen in training.

● Tree structured models can learn to reason with
quantifiers.

Do we see these behaviors in textual entailment with real
natural language?

● To do NLI on real English, we need to teach an NN
model English almost from scratch.

● What data do we have to work with:
○ GloVe/word2vec (useful w/ any data source)
○ SICK: Thousands of examples created by editing

and pairing hundreds of sentences.
○ RTE: Hundreds of examples created by hand.
○ DenotationGraph: Millions of extremely noisy

examples (~73% correct?) constructed fully
automatically.

Natural language inference data

Results on SICK (+DG, +tricks) so far

SICK Train DG Train Test

Most freq. class 56.7% 50.0% 56.7%
30 dim TreeRNN 95.4% 67.0% 74.9%

50 dim TreeRNTN 97.8% 74.0% 76.9%

Best result (UIllinois) 84.5%
≈ interannotator agreement!

Median submission (out of 18): 77%
Our TreeRNTN: 76.9%

We’re the only purely-learned system in the competition:
Everything but the parser is trained from the supplied data.

Are we competitive? Sort of...

A guy is mowing the lawn.
Grass is being mowed by a man.
ENTAILMENT

A guy is mowing the lawn
There is no guy mowing the lawn.
CONTRADICTION

A guy is mowing the lawn
There is no man mowing grass.
CONTRADICTION ...

Is it realistic to learn from SICK?

● To do NLI on real English, we need to teach an NN
model English almost from scratch.

● What data do we have to work with:
○ GloVe/word2vec (useful w/ any data source)
○ SICK: Thousands of examples created by editing

and pairing hundreds of sentences.
○ RTE: Hundreds of examples created by hand.
○ DenotationGraph: Millions of extremely noisy

examples (~73% correct?) constructed fully
automatically.

Natural language inference data

● To do NLI on real English, we need to teach an NN
model English almost from scratch.

● What data do we have to work with:
○ GloVe/word2vec (useful w/ any data source)
○ SICK: Thousands of examples created by editing

and pairing hundreds of sentences.
○ RTE: Hundreds of examples created by hand.
○ DenotationGraph: Millions of extremely noisy

examples (~73% correct?) constructed fully
automatically.

○ Stanford NLI corpus: ~600k examples, written by
Turkers.

Natural language inference data

The Stanford NLI corpus

Some examples

A young boy rides a bike down a snow covered road.
A child is outside.
ENTAILMENT

2 female babies eating chips.
Two female babies are enjoying chips.
NEUTRAL

A woman in an apron shopping at a market.
A woman in an apron is preparing dinner.
CONTRADICTION

Results?

Not much yet:
● Train on SICK + DG, test on SICK: So-so
● Train on SNLI: Stay tuned!

Interested in being one of the first to work on this? The draft
corpus is available to the class.

Deep learning for text: Logistics

● Lots of knobs to twiddle:
○ Optimization method (plain SGD, AdaGrad, ...)
○ Dimensionality
○ Initialization, regularization
○ Type of layer function/nonlinearity
○ Train/test split

...
● Good references for general NN methods (though

‘standard’ methods change often):
○ An incomplete book from the Bengio lab: http://www.

iro.umontreal.ca/~bengioy/dlbook/
○ Coursera lectures from Geoff Hinton:

https://www.coursera.org/course/neuralnets

http://www.iro.umontreal.ca/~bengioy/dlbook/
http://www.iro.umontreal.ca/~bengioy/dlbook/
http://www.iro.umontreal.ca/~bengioy/dlbook/
https://www.coursera.org/course/neuralnets
https://www.coursera.org/course/neuralnets

Deep learning for text: Logistics

● Typical training times for models like the ones seen
here: 4-48h

● No standard deep learning library yet can do everything
you’ll want for language.
○ CAFFE (Python), Theano (Python), Torch (Lua) all

very strong for at least some model types.
○ Try my MATLAB codebase for an easy start with:

■ RNN, LSTM
■ TreeRNN, TreeRNTN, TreeLSTM

https://github.com/sleepinyourhat/vector-entailment

Thanks!

More questions?
sbowman@stanford.edu

mailto:sbowman@stanford.edu
mailto:sbowman@stanford.edu

