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Today

Promising signs that neural network models can learn to 
handle semantic tasks:
● Sentiment and semantic similarity (e.g., Tai et al. 2015)
● Paraphrase detection (Socher et al. 2011)
● Machine translation (e.g., Sutskever et al. 2014, 

Bahdanau et al. 2014)

How do these models work?

How well can they handle anything we’d recognize as 
meaning?



Today

How do these models work?
● Survey: Deep learning models for NLU

How well can they handle anything we’d recognize as 
meaning?
● A measure of success: natural language inference
● Three experiments on artificial data
● Frontiers: What about real language?



NNs for sentence meaning

Input: Word vectors

Output: Sentence vectors

Training: Supervised classification over sentence vectors

badthatnot
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Input: Word vectors

Output: Sentence vectors

Training: Supervised classification over sentence vectors
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Baseline: Sum of words

Prediction: 3/5    Σ (          )
● Words and constituents are 25-

500d vectors.
● Optimize with SGD
● Gradients from backprop

Softmax classifier

bad
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Recurrent NNs for text

Prediction: 3/5not

● Words and constituents are 25-
500d vectors.

● One  learned composition function:
      y = f(M[x yprev]  + b)

● Optimize with SGD
● Gradients from backprop (through 

time)

f(x) = tanh(x)
     ...usually

badnot that

not that not that bad

Composition NN layers
s

Softmax classifier

Learned word vectors



Recurrent NNs for text

Prediction: 3/5not

● LSTM (Long Short Term Memory) models are RNNs 
with a more complex learned activation function meant 
to do a better job of preserving information across long 
sequences.

badnot that

not not Prediction: 3/5not

badnot that

not that not

Composition LSTM layers Softmax classifier

Learned word vectors

 Hochreiter and  Schmidhuber 1997

not not that bad



My focus: TreeRNNs*

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

Socher et al. 2011

● Sequence of operations follows parse tree
● Different sentence? Different tree structure.
*RNN = Recurrent NN  and  TreeRNN = Tree-structured Recursive NN. Aagh.



My focus: TreeRNNs

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

Socher et al. 2011

● Basic TreeRNN uses the same kind of learned function 
as an RNN:
      y = f(M[xl xr]  + b)



Variants: Dependency TreeRNNs

bad

is

the movie isn’t bad

● Dependency tree RNNs
y = Mheadxhead + f(Mrel(1)x1) + f(Mrel(2)x2)...

is

DET
Words transformed into constituents

n’t

n’t
NEG

Learned word vectors

Label: 3/5
Softmax classifier

movie

the movie

the

the

COPNSUBJ

Socher et al. 2014



Variants: Matrix-vector TreeRNN

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors
and word matrices

● Matrix-vector RNN 
composition functions:
     y = f(Mv[Ba Ab])

Y = Mm[A B]

Socher et al. 2012



Variants: TreeRNTN

Label: 3/5

badthat

that badnot

not that bad

Softmax classifier

Composition NTN layer

Learned word vectors

Composition NTN layer

● Recursive neural tensor 
network composition 
function:

y = f(xlM
[1...N]xr + M[xl xr] + b)

Chen et al. 2013, Socher et al. 2013



Other NNs for sentence meaning

And more:
● Tree autoencoders (Socher et al 2011)
● TreeLSTMs (Tai et al 2015)
● Convolutional NNs for text (Kalchbrenner et al. 2014)
● Character-level convolution (Zhang and LeCun 2015)

...



The big question

How well are supervised neural network 
models able to learn representations of 
sentence meaning?
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The big question

How well are supervised neural network 
models able to learn representations of 
sentence meaning?

Don’t ask what meanings are. Ask what they do, and find 
something that does that. 

-David Lewis, paraphrased



The task: Natural language inference

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants

Bill’s thesis



The task: Natural language inference

Claim: Simple task to define, but engages the full 
complexity of compositional semantics:
● Lexical entailment
● Quantification
● Coreference
● Lexical/scope ambiguity
● Commonsense knowledge
● Propositional attitudes
● Modality
● Factivity and implicativity

...



Lexical relations

Experimental approach: Train on relational statements 
generated from some formal system, test on other such 
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical 

relations)



Formulating a learning problem

Training data:
dance entails move
waltz neutral tango
tango entails dance
sleep contradicts dance
waltz entails dance

Memorization (training set): Generalization (test set):
dance ??? move sleep ??? waltz
waltz ??? tango tango ??? move



MacCartney’s natural logic

An implementable logic for natural language inference 
without logical forms. (MacCartney and Manning ‘09)
● Sound logical interpretation (Icard and Moss ‘13)



Natural logic: relations
Seven possible relations between phrases/sentences:

Venn symbol name example

x ≡ y equivalence couch ≡ sofa

x ⊏ y forward entailment
(strict)

crow ⊏ bird

x ⊐ y reverse entailment
(strict)

European ⊐ French

x ^ y negation
(exhaustive exclusion)

human ^ nonhuman

x | y alternation
(non-exhaustive exclusion)

cat | dog

x ‿ y cover
(exhaustive non-exclusion)

animal ‿ nonhuman

x # y independence hungry # hippo

Slide from Bill MacCartney



Natural logic: relation joins

MacCartney’s join table: a R b ∧ b R’ c ⊢ a {R ⨝ R’} c

{animal ⊐ cat, cat ⊐ kitten}  ⊢ animal ⊐ kitten
{cat ⊏ animal, animal ^ non-animal}  ⊢ cat | non-animal



Natural logic: relation joins

Can our NNs learn to make these inferences
over pairs of embedding vectors?



Lexical relations: data generation

{b,c}

{b}

{}

{c}

{a,b,c}

{a}

{a,b} {a,c}



Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}



Lexical relations
Extracted relations:
p1 ≡ p2
p1  ^  p7
p1 ⊐ p5
p4 ⊐ p8
p2 ⊐ p5
p5 ≡ p6
p5  |   p7
p7 ⊏ p4
p7 ^   p1
p8 ⊐ p1

Lexical relations: data generation
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{b,c}

{b}
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p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}



Lexical relations
Train: Test:
p1 ≡ p2

p1  ^  p7
p1 ⊐ p5
p4 ⊐ p8

p2 ⊐ p5
p5 ≡ p6

p5  |   p7
p7 ⊏ p4

p7 ^   p1
p8 ⊐ p4

Lexical relations: data generation
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Lexical relations
Train: Test:
p1 ≡ p2

p1  ^  p7
p1 ⊐ p5
p4 ⊐ p8

p2 ⊐ p5
p5 ≡ p6

p5  |   p7
p7 ⊏ p4

p7 ^   p1
p8 ⊐ p4

Lexical relations: data generation

p4
{b,c}

{b}

{}

p7, p8
{c}

{a,b,c}

p5, p6
{a}

p1, p2
{a,b}

p3
{a,c}



A minimal NN for lexical relations

P(entailment) = 0.9

pantsjeans

jeans vs. pants

Softmax classifier

Comparison N(T)N layer

Learned word vectors

● Words are learned embedding vectors.

● One plain TreeRNN or 
TreeRNTN layer

● Softmax emits relation labels

● Learn everything with SGD.



Lexical relations: training

● 80 random terms (p1 - p80) denoting sets
○ Sampled with replacement from the powerset of the 

set of 7 entities (a-g) 

● 6400 statements, yielding:
○ 3200 training examples
○ about 2900 provable test examples

(~7% not provable)



Lexical relations: results

● Both models tuned, then trained to convergence on five 
randomly generated datasets

● Reported figures: % correct (macroaveraged F1)

● Both NNs used 15d embeddings, 75d comparison layer



Lexical relations: Conclusions

● Success! NTNs can learn lexical entailment networks
○ No special optimization techniques required
○ Good generalization even with small training sets

● Open questions:
○ Geometric theory of lexical relations?
○ Relationship between the number of terms and the 

number of dimensions in the embedding?



Recursion in propositional logic

Experimental approach: Train on relational statements 
generated from some formal system, test on other such 
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical 
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(projectivity)



Recursion in propositional logic

Experimental approach: Train on relational statements 
generated from some formal system, test on other such 
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical 

relations)
● Learn how lexical relations impact phrasal relations. 

(projectivity)
○ This needs to be recursively applicable!

a ≡ a,   a ^ (not a),   a ≡ (not (not a)),   ...



Recursion in propositional logic
Data: randomly generated sentences with and, or, and not
● 6 proposition variables (a-f), at most 4 per example
● Propositions are variables over unknown truth values 

(264 possible representations)
● Train on statements with at most 4 operators, test with 

more.



NLI with TreeRNNs

● Model structure:
○ Two trees, then a separately learned comparison 

layer, then a classifier:
P( | ) = 0.8

not a vs. a and b

band

and ba

a and b

anot

not a

Softmax classifier

Comparison N(T)N layer

Composition RN(T)N layer

Learned word vectors



Recursion in propositional logic



Today

How do these models work?
● Survey: Deep learning models for NLU

How well can they handle anything we’d recognize as 
meaning?
● A measure of success: natural language inference
● Can NNs learn lexical relations?
● Can TreeRNNs learn recursive functions?
● What about quantification and monotonicity?
● Frontiers: What about real language?



Quantifiers

Experimental paradigm: Train on relational statements 
generated from some formal system, test on other such 
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical 

relations)
● Learn how lexical relations impact phrasal relations. 

(projectivity)



Quantifiers

Experimental paradigm: Train on relational statements 
generated from some formal system, test on other such 
relational statements.

The model needs to:
● Learn the relations between individual words. (lexical 

relations)
● Learn how lexical relations impact phrasal relations. 

(projectivity)
● Quantifiers present some of the harder cases of both of 

these.



Two experiments



Quantifiers
● Small vocabulary

○ Three basic types:
■ Quantifiers: some, all, no, most, two, three, not-

all, not-most, less-than-two, less-than-three
■ Predicates: dog, cat, mammal, animal …
■ Negation: not 

● 60k examples generated using a generative 
implementation of the relevant portion of MacCartney 
and Manning’s logic. 

● All sentences of the form QPP, with optional negation 
on each predicate.



Quantifier results

Train Test

Most freq. class (# only) 35.4% 35.4%

25d SumNN (sum of words) 96.9% 93.9%

25d TreeRNN 99.6% 99.2%

25d TreeRNTN 100% 99.7%



Summary: Artificial data

● Simple NTNs can encode relation composition 
accurately.

● Tree structured models can learn recursive functions, 
and can apply them in structures that are (somewhat) 
larger than those seen in training.

● Tree structured models can learn to reason with 
quantifiers.

Do we see these behaviors in textual entailment with real 
natural language?



● To do NLI on real English, we need to teach an NN 
model English almost from scratch.

● What data do we have to work with:
○ GloVe/word2vec (useful w/ any data source)
○ SICK: Thousands of examples created by editing 

and pairing hundreds of sentences.
○ RTE: Hundreds of examples created by hand.
○ DenotationGraph: Millions of extremely noisy 

examples (~73% correct?) constructed fully 
automatically.

Natural language inference data



Results on SICK (+DG, +tricks) so far 

SICK Train DG Train Test

Most freq. class 56.7% 50.0% 56.7%
30 dim TreeRNN 95.4% 67.0% 74.9%

50 dim TreeRNTN 97.8% 74.0% 76.9%



Best result (UIllinois) 84.5% 
≈ interannotator agreement!

Median submission (out of 18): 77%
Our TreeRNTN: 76.9%

We’re the only purely-learned system in the competition: 
Everything but the parser is trained from the supplied data.

Are we competitive? Sort of...



A guy is mowing the lawn.
Grass is being mowed by a man.
ENTAILMENT

A guy is mowing the lawn
There is no guy mowing the lawn.
CONTRADICTION

A guy is mowing the lawn
There is no man mowing grass.
CONTRADICTION ...

Is it realistic to learn from SICK?
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● To do NLI on real English, we need to teach an NN 
model English almost from scratch.

● What data do we have to work with:
○ GloVe/word2vec (useful w/ any data source)
○ SICK: Thousands of examples created by editing 

and pairing hundreds of sentences.
○ RTE: Hundreds of examples created by hand.
○ DenotationGraph: Millions of extremely noisy 

examples (~73% correct?) constructed fully 
automatically.

○ Stanford NLI corpus: ~600k examples, written by 
Turkers.

Natural language inference data



The Stanford NLI corpus



Some examples

A young boy rides a bike down a snow covered road.
A child is outside.
ENTAILMENT

2 female babies eating chips.
Two female babies are enjoying chips.
NEUTRAL

A woman in an apron shopping at a market.
A woman in an apron is preparing dinner.
CONTRADICTION



Results?

Not much yet:
● Train on SICK + DG, test on SICK: So-so
● Train on SNLI: Stay tuned!

Interested in being one of the first to work on this? The draft 
corpus is available to the class.



Deep learning for text: Logistics

● Lots of knobs to twiddle:
○ Optimization method (plain SGD, AdaGrad, ...)
○ Dimensionality
○ Initialization, regularization
○ Type of layer function/nonlinearity
○ Train/test split

...
● Good references for general NN methods (though 

‘standard’ methods change often):
○ An incomplete book from the Bengio lab: http://www.

iro.umontreal.ca/~bengioy/dlbook/
○ Coursera lectures from Geoff Hinton:

https://www.coursera.org/course/neuralnets

http://www.iro.umontreal.ca/~bengioy/dlbook/
http://www.iro.umontreal.ca/~bengioy/dlbook/
http://www.iro.umontreal.ca/~bengioy/dlbook/
https://www.coursera.org/course/neuralnets
https://www.coursera.org/course/neuralnets


Deep learning for text: Logistics

● Typical training times for models like the ones seen 
here: 4-48h

● No standard deep learning library yet can do everything 
you’ll want for language.
○ CAFFE (Python), Theano (Python), Torch (Lua) all 

very strong for at least some model types.
○ Try my MATLAB codebase for an easy start with:

■ RNN, LSTM
■ TreeRNN, TreeRNTN, TreeLSTM

https://github.com/sleepinyourhat/vector-entailment


Thanks!

More questions?
sbowman@stanford.edu

mailto:sbowman@stanford.edu
mailto:sbowman@stanford.edu

